Apoptosis-Promoting Effects on A375 Human Melanoma Cells Induced by Exposure to 35.2-GHz Millimeter Wave

Zhao R, Liu Y, Liu S, et al. Apoptosis-Promoting Effects on A375 Human Melanoma Cells Induced by Exposure to 35.2-GHz Millimeter Wave. Technol Cancer Res Treat. 2020;19:1533033820934131. doi:10.1177/1533033820934131

Abstract

Malignant tumors pose a major problem in the medical field. Millimeter wave (MMW) exposure have potential apoptosis-promoting effects on several types of tumors. Considering that the penetration depth of millimeter wave is usually several millimeters, we study the apoptosis-promoting effects of millimeter wave exposure on A375 human melanoma tumor cells in vitro, and this topic has not been explored in the previous literature. In this study, we use the A375 human melanoma cell line as an experimental model exposed to 35.2 GHz millimeter wave in vitro to determine any positive effect and further explore the underlying mechanisms. In this study, 2 groups namely, exposed and sham groups, were set. The exposed groups included 4 exposure time periods of 15, 30, 60, and 90 minutes. The cells in the sham group did not receive millimeter wave exposure. After millimeter wave exposure, the A375 cells in the exposed and sham groups were collected for further experimental procedures. The cell viability after exposure was determined using a cell counting kit, and the apoptosis of A375 cells was assessed by Annexin V/propidium iodide. Changes in the expression of apoptosis-related proteins, including cleaved-caspase-3, and -8, were examined by Western blot. We observed that the millimeter wave exposure could inhibit the viability and induce apoptosis in A375 cells, and the expression of cleaved caspase-3 and -8 were upregulated (P < .05). The results indicated that the millimeter wave at 35.2 GHz exerted apoptosis-promoting effects on the A375 cells via a pathway by activating of caspase-8 and -3.

Related Posts