First Estimation of Global Trends in Nocturnal Power Emissions Reveals Acceleration of Light Pollution

Sánchez de Miguel, A.; Bennie, J.; Rosenfeld, E.; Dzurjak, S.; Gaston, K.J. First Estimation of Global Trends in Nocturnal Power Emissions Reveals Acceleration of Light Pollution. Remote Sens. 202113, 3311. https://doi.org/10.3390/rs13163311

Abstract

The global spread of artificial light is eroding the natural night-time environment. The estimation of the pattern and rate of growth of light pollution on multi-decadal scales has nonetheless proven challenging. Here we show that the power of global satellite observable light emissions increased from 1992 to 2017 by at least 49%. We estimate the hidden impact of the transition to solid-state light-emitting diode (LED) technology, which increases emissions at visible wavelengths undetectable to existing satellite sensors, suggesting that the true increase in radiance in the visible spectrum may be as high as globally 270% and 400% on specific regions. These dynamics vary by region, but there is limited evidence that advances in lighting technology have led to decreased emissions.

https://www.mdpi.com/2072-4292/13/16/3311/htm

Related Posts