Wieduwilt A, Alsat EA, Blickwedel J, et al. Dramatically altered environmental lighting conditions in women with high-risk pregnancy during hospitalization [published online ahead of print, 2020 Aug 4]. Chronobiol Int. 2020;1-6. doi:10.1080/07420528.2020.1792484
Abstract
The maternal circadian time structure is incredibly important in the entrainment and programing of the fetal and newborn circadian time structure. Natural sunlight is the primary environmental time cue for entrainment of circadian rhythms, but high-risk pregnant women spend most of their time indoors with artificial light sources and extremely low levels of natural light both during the day and night. Because the daily level, timing, duration of light exposure and its spectral properties are important in maintaining the normal circadian physiology in humans, we aimed to evaluate the environmental lighting conditions in high-risk pregnant women admitted to hospital for long-term stay. About 30 patients were included in the study. Exposed illuminance, color temperature and effective circadian radiation dose were measured and recorded every 10 s by light dosimeters attached to the patients’ clothing. We documented the illuminance of 29 pregnant women on 235 inpatient days. Median (IQR) measured illuminance was 70 (28-173) lux in the morning, 124 (63-241) lux in the afternoon, 19 (6-53) lux in the evening and 0 (0-0) lux at the night. Median illuminance for the 235 inpatient days of assessment was below the recommended EU standard of 100 lux-60.5% of the mornings and 42.7% of the afternoons. The women confined to indoor locations rarely achieved an illuminances more than 300 lux in the morning and in the afternoon. Compared to women with outdoor mobility, those confined indoors have a significantly lower illuminance and color temperature, both in the morning and in the afternoon. Our study presents the first information about the dramatically altered environmental lighting conditions experienced by high-risk pregnant women during their hospital stay. Their exposure to light while in the hospital is significantly lower than exposure to natural daylight levels and below the recommended EU standard.